国产肉体XXXX裸体137大胆,国产成人久久精品流白浆,国产乱子伦视频在线观看,无码中文字幕免费一区二区三区 国产成人手机在线-午夜国产精品无套-swag国产精品-国产毛片久久国产

首頁  資訊  商機   下載  拆解   高校  招聘   雜志  會展  EETV  百科   問答  電路圖  工程師手冊   Datasheet  100例   活動中心  E周刊閱讀   樣片申請
EEPW首頁 >> 主題列表 >> nch mosfet

MOSFET基本原理、參數(shù)及米勒效應全解

  • 1MOSFET基本工作原理1.1小功率MOSFET場效應管(FET)是利用輸入回路的電場效應來控制輸出回路電流的一種半導體器件,由于緊靠半導體中的多數(shù)載流子導電,又稱單極型晶體管。場效應管分為結型和絕緣柵兩種,因為絕緣柵型晶體管(MOSFET,下面簡稱MOS管)的柵源間電阻比結型大得多且比結型場效應管溫度穩(wěn)定性好、集成化時工藝簡單,因而目前普遍采用絕緣柵型晶體管。MOS管分為N溝道和P溝道兩類,每一類又分為增強型和耗盡型兩種,只要柵極-源極電壓uGS為零時漏極電流也為零的管子均屬于增強型管,只要柵極-源極
  • 關鍵字: MOSFET  參數(shù)  米勒效應  

功率MOSFET的工作原理

  • 功率MOSFET的開通和關斷過程原理(1)開通和關斷過程實驗電路(2)MOSFET 的電壓和電流波形:(3)開關過程原理:開通過程[ t0 ~ t4 ]:-- 在 t0 前,MOSFET 工作于截止狀態(tài),t0 時,MOSFET 被驅動開通;-- [t0-t1]區(qū)間,MOSFET 的GS 電壓經(jīng)Vgg 對Cgs充電而上升,在t1時刻,到達維持電壓Vth,MOSFET 開始導電;-- [t1-t2]區(qū)間,MOSFET 的DS 電流增加,Millier 電容在該區(qū)間內因DS 電容的放電而放電,對GS 電容的充電
  • 關鍵字: 功率  MOSFET  工作原理  

第三代電力電子半導體SiC MOSFET:聚焦高效驅動方案

  • 第三代電力電子半導體SiC MOSFET:聚焦高效驅動方案相比傳統(tǒng)的硅MOSFET,SiC MOSFET可實現(xiàn)在高壓下的高頻開關。新能源、電動汽車、工業(yè)自動化等領域,SiC MOSFET(碳化硅-金屬氧化物半導體場效應晶體管)憑借高頻、高功率、低損耗等卓越性能,SiC MOSFET驅動方案備受關注。然而,SiC MOSFET的獨特器件特性,也意味著它們對柵極驅動電路有特殊的要求。本文將圍繞SiC MOSFET的驅動方案展開了解,其中包括驅動過電流、過電壓保護以及如何為SiC MOSFET選擇合
  • 關鍵字: 第三代半導體  SiC  MOSFET  高效驅動  電力電子  

Nexperia出色的SiC MOSFET分立器件采用越來越受歡迎的D2PAK-7封裝

  • Nexperia近日宣布,公司現(xiàn)推出業(yè)界領先的1200 V碳化硅(SiC) MOSFET,采用D2PAK-7表面貼裝器件(SMD)封裝,有30、40、60和80 mΩ RDSon值可供選擇。這是繼Nexperia于2023年底發(fā)布兩款采用3引腳和4引腳TO-247封裝的SiC MOSFET分立器件之后的又一新產(chǎn)品,它將使其SiC MOSFET產(chǎn)品組合迅速擴展到包括RDSon值為17、30、40、60和80 mΩ 且封裝靈活的器件。隨著NSF0xx120D7A0的發(fā)布,Nexperia正在滿足市場對采用D2
  • 關鍵字: Nexperia  SiC MOSFET  D2PAK-7  

用于SiC MOSFET和高功率IGBT的IX4352NE低側柵極驅動器

  • Littelfuse公司是一家工業(yè)技術制造公司,致力于為可持續(xù)發(fā)展、互聯(lián)互通和更安全的世界提供動力。公司隆重宣布推出IX4352NE低側SiC MOSFET和IGBT柵極驅動器。 這款創(chuàng)新的驅動器專門設計用于驅動工業(yè)應用中的碳化硅(SiC)MOSFET和高功率絕緣柵雙極晶體管(IGBT)。IX4352NE的主要優(yōu)勢在于其獨立的9A拉/灌電流輸出,支持量身定制的導通和關斷時序,同時將開關損耗降至最低。 內部負電荷調節(jié)器還能提供用戶可選的負柵極驅動偏置,以實現(xiàn)更高的dV/dt抗擾度和更快的關斷速度。 該驅動器
  • 關鍵字: SiC MOSFET  IGBT  低側柵極驅動器  

欠電壓閉鎖的一種解釋

  • 了解欠壓鎖定(UVLO)如何保護半導體器件和電子系統(tǒng)免受潛在危險操作的影響。當提到電源或電壓驅動要求時,我們經(jīng)常使用簡化,如“這是一個3.3 V的微控制器”或“這個FET的閾值電壓為4 V”。這些描述沒有考慮到電子設備在一定電壓范圍內工作——3.3 V的微型控制器可以在3.0 V至3.6 V之間的任何電源電壓下正常工作,而具有4 V閾值電壓的MOSFET可能在3.5 V至5 V之間獲得足夠的導電性。但即使是這些基于范圍的規(guī)范也可能具有誤導性。當VDD軌降至2.95V時,接受3.0至3.6 V電源電壓的數(shù)字
  • 關鍵字: 欠電壓閉鎖,UVLO  MOSFET,IC  

MOSFET開關損耗簡介

  • 本文將通過解釋MOSFET功耗的重要來源來幫助您優(yōu)化開關模式調節(jié)器和驅動器電路。MOSFET的工作可以分為兩種基本模式:線性和開關。在線性模式中,晶體管的柵極到源極電壓足以使電流流過溝道,但溝道電阻相對較高??鐪系赖碾妷汉土鬟^溝道的電流都是顯著的,導致晶體管中的高功耗。在開關模式中,柵極到源極電壓足夠低以防止電流流動,或者足夠高以使FET處于“完全增強”狀態(tài),在該狀態(tài)下溝道電阻大大降低。在這種狀態(tài)下,晶體管就像一個閉合的開關:即使大電流流過通道,功耗也會很低或中等。隨著開關模式操作接近理想情況,功耗變得可
  • 關鍵字: MOSFET  開關損耗  

一文詳解電池充電器的反向電壓保護

  • 處理電源電壓反轉有幾種眾所周知的方法。最明顯的方法是在電源和負載之間連接一個二極管,但是由于二極管正向電壓的原因,這種做法會產(chǎn)生額外的功耗。雖然該方法很簡潔,但是二極管在便攜式或備份應用中是不起作用的,因為電池在充電時必須吸收電流,而在不充電時則須供應電流。另一種方法是使用圖 1 所示的 MOSFET 電路之一。圖 1:傳統(tǒng)的負載側反向保護對于負載側電路而言,這種方法比使用二極管更好,因為電源 (電池) 電壓增強了 MOSFET,因而產(chǎn)生了更少的壓降和實質上更高的電導。該電路的 NMOS 版本比 PM
  • 關鍵字: MOSFET  電源電壓反轉  

解析LLC諧振半橋變換器的失效模式

  • 在功率轉換市場中,尤其對于通信/服務器電源應用,不斷提高功率密度和追求更高效率已經(jīng)成為最具挑戰(zhàn)性的議題。對于功率密度的提高,最普遍方法就是提高開關頻率,以便降低無源器件的尺寸。零電壓開關(ZVS)拓撲因具有極低的開關損耗、較低的器件應力而允許采用高開關頻率以及較小的外形,能夠以正弦方式對能量進行處理,開關器件可實現(xiàn)軟開閉,因此可以大大地降低開關損耗和噪聲。在這些拓撲中,移相ZVS全橋拓撲在中、高功率應用中得到了廣泛采用,因為借助功率MOSFET的等效輸出電容和變壓器的漏感可以使所有的開關工作在ZVS狀態(tài)下
  • 關鍵字: LLC  MOSFET  ZVS  變換器  

談談幾種常用的MOSFET驅動電路

  • 一、MOS管驅動簡述MOSFET因導通內阻低、開關速度快等優(yōu)點被廣泛應用于開關電源中。MOSFET的驅動常根據(jù)電源IC和MOSFET的參數(shù)選擇合適的電路。在使用MOSFET設計開關電源時,大部分人都會考慮MOSFET的導通電阻、最大電壓、最大電流。但很多時候也僅僅考慮了這些因素,這樣的電路也許可以正常工作,但并不是一個好的設計方案。更細致的,MOSFET還應考慮本身寄生的參數(shù)。對一個確定的MOSFET,其驅動電路,驅動腳輸出的峰值電流,上升速率等,都會影響MOSFET的開關性能。當電源IC與MOS管選定之
  • 關鍵字: MOSFET  

Microchip推出基于dsPIC? DSC的新型集成電機驅動器將控制器、柵極驅動器和通信整合到單個器件

  • 為了在空間受限的應用中實現(xiàn)高效、實時的嵌入式電機控制系統(tǒng),Microchip Technology Inc.(微芯科技公司)推出基于dsPIC?數(shù)字信號控制器(DSC)的新型集成電機驅動器系列。該系列器件在一個封裝中集成了dsPIC33 數(shù)字信號控制器 (DSC)、一個三相MOSFET柵極驅動器和可選LIN 或 CAN FD 收發(fā)器。這種集成的一個顯著優(yōu)勢是減少電機控制系統(tǒng)設計的元件數(shù)量,縮小印刷電路板(PCB)尺寸,并降低復雜性。該系列器件的支持資源包括開發(fā)板、參考設計、應用筆記和 Micr
  • 關鍵字: dsPIC  數(shù)字信號控制器  MOSFET  電機控制  

Qorvo SiC FET與SiC MOSFET優(yōu)勢對比

  • 在之前一篇題為《功率電子器件從硅(Si)到碳化硅(SiC)的過渡》的博文中,我們探討了碳化硅(SiC)如何成為功率電子市場一項“顛覆行業(yè)生態(tài)”的技術。如圖1所示,與硅(Si)材料相比,SiC具有諸多技術優(yōu)勢,因此我們不難理解為何它已成為電動汽車(EV)、數(shù)據(jù)中心和太陽能/可再生能源等許多應用領域中備受青睞的首選技術。圖1.硅與碳化硅的對比眾多終端產(chǎn)品制造商紛紛選擇采用SiC技術替代硅基工藝,來開發(fā)基于雙極結型晶體管(BJT)、結柵場效應晶體管(JFET)、金屬氧化物半導體場效應晶體管(MOSFET)和絕緣
  • 關鍵字: Qorvo  SiC  MOSFET  

英飛凌為汽車應用推出業(yè)內導通電阻最低的80 V MOSFET OptiMOS? 7

  • 英飛凌科技股份公司近日推出其最新先進功率MOSFET?技術——?OptiMOS? 7 80 V的首款產(chǎn)品IAUCN08S7N013。該產(chǎn)品的特點包括功率密度顯著提高,和采用通用且穩(wěn)健的高電流SSO8 5 x 6 mm2 SMD封裝。這款OptiMOS? 7 80 V產(chǎn)品非常適合即將推出的?48 V板網(wǎng)應用。它專為滿足高要求汽車應用所需的高性能、高質量和穩(wěn)健性而打造,包括電動汽車的汽車直流-直流轉換器、48 V電機控制(例如電動助力轉向系統(tǒng)(EPS))、48 V電池開關以及電動
  • 關鍵字: 英飛凌  MOSFET  OptiMOS  

P溝道功率MOSFETs及其應用領域

  • Littelfuse P溝道功率MOSFETs,雖不及廣泛使用的N溝道MOSFETs出名,在傳統(tǒng)的應用范圍也較有限,然而,隨著低壓(LV)應用需求的增加,P溝道功率MOSFET的應用范圍得到拓展。高端側(HS)應用P溝道的簡易性使其對低壓變換器(<120 V)和非隔離的負載點更具吸引力。因為無需電荷泵或額外的電壓源,高端側(HS)P溝道MOSFET易于驅動,具有設計簡單、節(jié)省空間,零件數(shù)量少等特點,提升了成本效率。本文通過對N 溝道和P溝道MOSFETs進行比較,介紹Littelfuse P溝道功率
  • 關鍵字: 202404  P溝道功率MOSFET  MOSFET  

高壓功率器件設計挑戰(zhàn)如何破?

  • 不斷提升能效的需求影響著汽車和可再生能源等多個領域的電子應用設計。對于電動汽車 (EV) 而言,更高效率意味著更遠的續(xù)航里程;而在可再生能源領域,發(fā)電效率更高代表著能夠更充分地將太陽能或風能轉換為電能。圖1.在電動汽車和可再生能源領域,對更高效率的不懈追求正推動著設計向前發(fā)展這兩大領域都廣泛采用開關電子器件,因而又催生了更高電壓器件的需求。電壓和效率之間的關系遵循歐姆定律,也就是說電路中產(chǎn)生的功耗或損耗與電流的平方成正比。同理,當電壓加倍時,電路中的電流會減半,因而損耗會降到四分之一。根據(jù)這個原理,為了減
  • 關鍵字: 高電壓  高電壓  轉換器  逆變器  MOSFET  電力電子  EliteSiC  
共1275條 4/85 |‹ « 2 3 4 5 6 7 8 9 10 11 » ›|

nch mosfet介紹

您好,目前還沒有人創(chuàng)建詞條nch mosfet!
歡迎您創(chuàng)建該詞條,闡述對nch mosfet的理解,并與今后在此搜索nch mosfet的朋友們分享。    創(chuàng)建詞條

熱門主題

樹莓派    linux   
關于我們 - 廣告服務 - 企業(yè)會員服務 - 網(wǎng)站地圖 - 聯(lián)系我們 - 征稿 - 友情鏈接 - 手機EEPW
Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《電子產(chǎn)品世界》雜志社 版權所有 北京東曉國際技術信息咨詢有限公司
備案 京ICP備12027778號-2 北京市公安局備案:1101082052    京公網(wǎng)安備11010802012473