- 通過極限學習機ELM算法改進K-SVD字典學習算法,并成功應用于多特征融合物體成像識別領域。研究結果表明:通過ELM算法,字典精確度和優(yōu)勢在處理后的提升效果均十分顯著。不論是從計算效率還是計算準確率來看,改進的K-SVD算法表現出較佳優(yōu)勢。K-SVD算法性能可通過ELM顯著提升,算法識別準確率在多特征加入后也相應快速增長。將較低分辨率的樣本從圖像中篩選出來,有利于減少傅里葉疊層成像數量。
- 關鍵字:
202308 K-SVD算法 算法改進 圖像識別
k-svd算法介紹
您好,目前還沒有人創(chuàng)建詞條k-svd算法!
歡迎您創(chuàng)建該詞條,闡述對k-svd算法的理解,并與今后在此搜索k-svd算法的朋友們分享。
創(chuàng)建詞條
關于我們 -
廣告服務 -
企業(yè)會員服務 -
網站地圖 -
聯系我們 -
征稿 -
友情鏈接 -
手機EEPW
Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《電子產品世界》雜志社 版權所有 北京東曉國際技術信息咨詢有限公司

京ICP備12027778號-2 北京市公安局備案:1101082052 京公網安備11010802012473