大唐電信集團陳山枝:如何實現(xiàn)中國“5G引領(lǐng)”的戰(zhàn)略目標(biāo)
隨著關(guān)鍵技術(shù)的突破,特別是射頻器件和天線等技術(shù)的進步,使多達100個以上天線端口的大規(guī)模多天線技術(shù)在5G應(yīng)用成為可能,是目前業(yè)界公認為應(yīng)對5G在系統(tǒng)容量、數(shù)據(jù)速率等方面挑戰(zhàn)的標(biāo)志技術(shù)之一。在實際應(yīng)用中,通過使用大規(guī)模多天線陣列,基站可以在三維空間形成具有更高空間分辨率的高增益窄細波束,從而實現(xiàn)更靈活的空間復(fù)用能力和改善接收端接收信號,并且更窄波束可以大幅度降低用戶間干擾,從而實現(xiàn)更高的系統(tǒng)容量和頻譜利用效率。
本文引用地址:http://m.ptau.cn/article/201610/311268.htm大規(guī)模多天線技術(shù)在5G中的潛在應(yīng)用場景包括宏覆蓋、高層建筑、異構(gòu)網(wǎng)絡(luò)、室內(nèi)外熱點及無線回傳鏈路等。在廣域覆蓋場景,大規(guī)模多天線技術(shù)可以利用現(xiàn)有頻段;在熱點覆蓋或回傳鏈路等場景中,則可以考慮使用更高頻段。
當(dāng)前,大規(guī)模多天線技術(shù)面臨的挑戰(zhàn)包括:基帶運算的復(fù)雜度、處理時間和成本問題;信道測量性能和信道狀態(tài)信息反饋的導(dǎo)頻開銷問題;相位噪聲與校正問題等。主要研究方向包括:高效信號處理技術(shù)、信道建模及系統(tǒng)性能分析技術(shù)、信道狀態(tài)信息獲取技術(shù)、成形碼本的設(shè)計、多用戶調(diào)度與資源管理技術(shù)、大規(guī)模有源陣列天線技術(shù)、覆蓋增強技術(shù)以及高速移動解決方案。
包括大唐電信在內(nèi)的我國企業(yè)從TD-SCDMA開始,首次在全球?qū)⒅悄芴炀€波束成形技術(shù)引入蜂窩移動通信系統(tǒng),并且在TD-LTE中拓展到8天線多流波束成形技術(shù),實現(xiàn)了波束成形與空間復(fù)用的深度融合,在國際上領(lǐng)先,且已經(jīng)在全球商用,性能得到業(yè)界認可。目前大部分商用FDD LTE仍采用2天線(部分采用4天線)。在多天線技術(shù)方面,F(xiàn)DD落后于TDD??梢?,TD-LTE的多天線多流波束成形技術(shù)成果為我國企業(yè)在5G大規(guī)模多天線及波束成形的技術(shù)研究、標(biāo)準(zhǔn)與產(chǎn)業(yè)上取得了先機。
3.2 5G新型多址接入技術(shù):PDMA
多址接入技術(shù)是解決多用戶進行信道復(fù)用的技術(shù)手段,是移動通信系統(tǒng)的基礎(chǔ)性傳輸方式,關(guān)系到系統(tǒng)容量、小區(qū)構(gòu)成、頻譜和信道利用效率以及系統(tǒng)復(fù)雜性和部署成本,也關(guān)系到設(shè)備基帶處理能力、射頻性能和成本等工程問題。多址接入技術(shù)可以將信號維度按照時間、頻率或碼字分割為正交或者非正交的信道,分配給用戶使用。歷代移動通信系統(tǒng)都有其標(biāo)志性的多址接入技術(shù)作為其革新?lián)Q代的標(biāo)志。例如:1G的模擬頻分多址接入(FDMA)技術(shù);2G的時分多址接入(TDMA)和頻分多址接入(FDMA)技術(shù);3G的碼分多址接入(CDMA)技術(shù);4G的正交頻分復(fù)用(OFDM)技術(shù)。1G到4G采用的都是正交多址接入技術(shù)。對于正交多址接入,用戶在發(fā)送端占用正交的無線資源,接收端易于使用線性接收機來進行多用戶檢測,復(fù)雜度較低,但系統(tǒng)容量會受限于可分割的正交資源數(shù)目。從單用戶信息論角度,LTE的單鏈路性能已接近點對點信道容量,提升空間十分有限;若從多用戶信息論角度,非正交多址技術(shù)還能進一步提高頻譜效率,也是逼近多用戶信道容量上界的有效手段。
因此,若繼續(xù)采用傳統(tǒng)的正交多址接入技術(shù),難以實現(xiàn)5G需要支持的大容量和海量連接數(shù)。理論上,非正交多址接入將突破正交多址接入的容量極限,能夠依據(jù)多用戶復(fù)用倍數(shù)來成倍地提升系統(tǒng)容量。非正交多址接入需要在接收端引入非線性檢測來區(qū)分用戶,得益于器件和集成電路的進步,目前非正交已經(jīng)從理論研究走向?qū)嶋H應(yīng)用。
圖樣分割多址接入(pattern division multiple access,PDMA)技術(shù),是大唐電信在早期SAMA(SIC amenable multiple access)研究基礎(chǔ)上提出的一種新型非正交多址接入技術(shù),它采用發(fā)送端與接收端聯(lián)合優(yōu)化設(shè)計的思想,將多個用戶的信號通過PDMA編碼圖樣映射到相同的時域、頻域和空域資源進行復(fù)用疊加傳輸,這樣可以大幅度地提升用戶接入數(shù)量。接收端利用廣義串行干擾刪除算法實現(xiàn)準(zhǔn)最優(yōu)多用戶檢測,逼近多用戶信道容量界,實現(xiàn)通信系統(tǒng)的整體性能最優(yōu)。PDMA技術(shù)可以應(yīng)用于通信系統(tǒng)的上行鏈路和下行鏈路,能夠提升移動寬帶應(yīng)用的頻譜效率和系統(tǒng)容量,支持5G海量物聯(lián)網(wǎng)終端接入。PDMA技術(shù)自提出就受到了業(yè)界的廣泛關(guān)注,2014年,PDMA技術(shù)被寫入ITU的新技術(shù)報告IMT.Trend。
大唐電信對PDMA的仿真評估表明:PDMA能夠使得系統(tǒng)下行頻譜效率提升50%以上,上行頻譜效率提升100%以上;采用PDMA與OFDM結(jié)合的接入方式時,能支持的終端接入數(shù)量,相對于4G提升5倍以上。目前,大唐電信正在開發(fā)PDMA原型系統(tǒng)。
3.3 雙工模式
雙工模式是指如何實現(xiàn)信號的雙向傳輸。時分雙工(TDD)是通過時間分隔實現(xiàn)信號的發(fā)送及接收;頻分雙工(FDD)是利用頻率分隔實現(xiàn)信號的發(fā)送及接收。從1G到4G,GSM、CDMA、WCDMA和FDD LTE都是FDD系統(tǒng),我國企業(yè)主導(dǎo)的TD-SCDMA和TD-LTE都是TDD系統(tǒng)。最新的研究方向是全雙工。
全雙工是指同時、同頻進行雙向通信,即無線通信設(shè)備使用相同的時間、相同的頻率,同時發(fā)射和接收無線信號,理論上可使無線通信鏈路的頻譜效率提高1倍。由于收發(fā)同時同頻,全雙工發(fā)射機的發(fā)射信號會對本地接收機產(chǎn)生干擾。根據(jù)典型蜂窩移動通信系統(tǒng)不同的覆蓋半徑,天線接頭處收發(fā)信號功率差通常在100~150 dB,如何簡單有效地消除如此大的自干擾是個難題,還有鄰近小區(qū)的同頻干擾問題以及工程實現(xiàn)上的電路小型化問題。目前實現(xiàn)自干擾抑制主要有空域、射頻域和數(shù)字域聯(lián)合等技術(shù)方案,研究以高校的理論分析和技術(shù)試驗為主,還沒有成熟的產(chǎn)品樣機和應(yīng)用。另外,全雙工在解決無線網(wǎng)絡(luò)中的某些特殊問題時有優(yōu)勢,如隱藏終端問題和多跳無線網(wǎng)絡(luò)端到端時延問題。
靈活雙工是指能夠根據(jù)上下行業(yè)務(wù)變化情況,靈活地分配上下行的時間和頻率資源,更好地適應(yīng)非均勻、動態(tài)變化或突發(fā)性的業(yè)務(wù)分布,有效提高系統(tǒng)資源的利用率。靈活雙工可以通過時域、頻域的方案實現(xiàn),若在時域?qū)崿F(xiàn),就是同一頻段上下行時隙可靈活配比,也就是TDD方案;若在頻域?qū)崿F(xiàn),則存在多于兩個頻段時,可以靈活配比上下行頻段;若在傳統(tǒng)FDD上下行的兩個頻段中,上行頻段的時隙配置實現(xiàn)可靈活時隙配比,則是TDD與FDD融合方案,可應(yīng)用于低功率節(jié)點,但這需要調(diào)研各國頻率政策,分析現(xiàn)有政策是否允許此方式。
目前產(chǎn)業(yè)界公認在LTE演進上主要定位TDD+,認為在5G低頻段將采用FDD和TDD,在高頻段更宜采用TDD。由于TDD模式能更好地支持5G關(guān)鍵技術(shù)(如大規(guī)模多天線、高頻段通信等)。筆者預(yù)測,全雙工在5G上的應(yīng)用將有限,TDD和FDD都會得到應(yīng)用且融合發(fā)展,但TDD在5G解決大容量和高頻段中會起到主導(dǎo)應(yīng)用,而且5G新空口極可能采用TDD模式,第5節(jié)將會有專門的分析與討論。
3.4 超密集組網(wǎng)
據(jù)參考文獻統(tǒng)計,在1950-2000年的50年間,相對于語音編碼和調(diào)制等物理層技術(shù)進步帶來不到10倍的頻譜效率提升和采用更大的頻譜帶寬帶來的傳輸速率幾十倍的提升, 通過縮小小區(qū)半徑(即頻譜資源的空間復(fù)用),帶來的頻譜效率可以提升2 700倍以上??梢?,網(wǎng)絡(luò)密集化是5G應(yīng)對移動數(shù)據(jù)業(yè)務(wù)大流量和劇增系統(tǒng)容量需求的重要手段之一。網(wǎng)絡(luò)密集程度可以用單位面積內(nèi)部署的天線數(shù)量來定義,有兩種手段可以實現(xiàn):多天線系統(tǒng)(大規(guī)模多天線或分布式天線系統(tǒng)等)和小小區(qū)的密集部署。后者就是超密集組網(wǎng),即通過更加“密集化”的基站部署,單個小區(qū)的覆蓋范圍大大縮小,以獲得更高的頻率復(fù)用效率,從而在局部熱點區(qū)域提升系統(tǒng)容量達百倍。典型應(yīng)用場景主要包括辦公室、密集住宅、密集街區(qū)、校園、大型集會、體育場、地鐵和公寓等。
隨著小區(qū)部署密度的增加,超密集組網(wǎng)將面臨許多新的技術(shù)挑戰(zhàn),如回傳鏈路、干擾、移動性、站址、傳輸資源和部署成本等。為了實現(xiàn)易部署、易維護、用戶體驗佳,超密集組網(wǎng)的研究方向包括小區(qū)虛擬化、自組織自優(yōu)化、動態(tài)TDD、先進的干擾管理和先進的聯(lián)合傳輸?shù)?。筆者提出了以用戶為中心的超密集組網(wǎng)(UUDN)。UUDN突破傳統(tǒng)以網(wǎng)絡(luò)為中心的理念,基于去蜂窩化的思想,采用更加貼近用戶的本地控制管理中心構(gòu)建以用戶為中心的虛擬伴隨小區(qū),通過高效的移動性管理,實現(xiàn)網(wǎng)隨用戶動。同時,系統(tǒng)智能感知用戶需求和網(wǎng)絡(luò)狀態(tài),按需選擇合理的接入方式和傳輸方式,實現(xiàn)以用戶為中心的業(yè)務(wù)傳輸。另外,以用戶為中心的超密集網(wǎng)絡(luò)還引入了先進的干擾管理、靈活的無線回傳、智能的網(wǎng)絡(luò)編排、網(wǎng)絡(luò)自優(yōu)化等先進特性,以提升網(wǎng)絡(luò)容量和區(qū)域頻譜效率,降低部署和維護成本,提升用戶體驗。
3.5 先進的頻譜利用技術(shù)
(1)高頻段無線傳輸技術(shù)
目前,蜂窩移動通信系統(tǒng)工作頻段主要在3 GHz以下,用戶數(shù)的增加和更高通信速率的需求,使得頻譜資源十分擁擠,而在6 GHz以上高頻段具有連續(xù)的大帶寬頻譜資源。目前產(chǎn)業(yè)界研究6~100 GHz的頻段(稱為毫米波,mmWave)來滿足5G對更大容量和更高速率的需求,傳送高達10 Gbit/s甚至更高速率的數(shù)據(jù)業(yè)務(wù)。
高頻通信已應(yīng)用在軍事通信和無線局域網(wǎng)方面,但在蜂窩通信領(lǐng)域的應(yīng)用研究尚處于起步階段。頻段越高,信道傳播路徑損耗越大,因此小區(qū)覆蓋半徑將大大縮小。在一定區(qū)域內(nèi)基站數(shù)量將大大增加,即形成UDN。高頻信道與傳統(tǒng)蜂窩頻段信道有明顯差異,存在如傳播損耗大、穿透能力有限、信道變化快、繞射能力差和移動性支持能力受限等問題,需要深入研究高頻信道的測量與建模、高頻新空口和組網(wǎng)技術(shù)。另外,研制大帶寬、低噪聲、高效率、高可靠性、多功能和低成本的高頻器件,仍是產(chǎn)業(yè)化的瓶頸,而我國產(chǎn)業(yè)在此方面差距更大。
評論