国产肉体XXXX裸体137大胆,国产成人久久精品流白浆,国产乱子伦视频在线观看,无码中文字幕免费一区二区三区 国产成人手机在线-午夜国产精品无套-swag国产精品-国产毛片久久国产

博客專欄

EEPW首頁 > 博客 > 【機器學習】樹模型決策的可解釋性與微調(Python)(2)

【機器學習】樹模型決策的可解釋性與微調(Python)(2)

發(fā)布人:數(shù)據(jù)派THU 時間:2022-10-20 來源:工程師 發(fā)布文章

二、微調樹模型結構以符合業(yè)務解釋性


但是樹模型的解釋性也是有局限的,再了解樹模型的決策邏輯后,不像邏輯回歸(LR)可以較為輕松的調節(jié)特征分箱及模型去符合業(yè)務邏輯(如收入越低的人通常越可能****逾期,模型決策時可能持相反的邏輯,這時就需要調整了)。


我們一旦發(fā)現(xiàn)樹結構或shap值不符合業(yè)務邏輯,由于樹模型學習通常較復雜,想要依照業(yè)務邏輯去調整樹結構就有點棘手了,所有很多時候只能推倒原來的模型,數(shù)據(jù)清洗、篩選、特征選擇等 重新學習一個新的模型,直到特征決策在業(yè)務上面解釋得通。


在此,本文簡單探討一個可以快速對lightgbm樹模型結構進行調整的方法。


lightgbm結構


首先導出lightgbm單棵樹的結構及相應的模型文件:# 本文代碼 (https://github.com/aialgorithm/Blog)
model.booster_.save_model("lgbmodel.txt") # 導出模型文件

圖片


treeversion=v3num_class=1num_tree_per_iteration=1label_index=0max_feature_idx=36objective=binary sigmoid:1feature_names=total_loan year_of_loan interest monthly_payment class work_year house_exist censor_status use post_code region debt_loan_ratio del_in_18month scoring_low scoring_high known_outstanding_loan known_dero pub_dero_bankrup recircle_b recircle_u initial_list_status app_type title policy_code f0 f1 f2 f3 f4 early_return early_return_amount early_return_amount_3mon issue_date_y issue_date_m issue_date_diff employer_type industryfeature_infos=[818.18181819999995:47272.727270000003] [3:5] [4.7789999999999999:33.978999999999999] [30.440000000000001:1503.8900000000001] [0:6] [0:10] [0:4] [0:2] [0:13] [0:901] [0:49] [0:509.3672727] [0:15] [540:910.90909090000002] [585:1131.818182] [1:59] [0:12] [0:9999] [0:779021] [0:120.6153846] [0:1] [0:1] [0:60905] none [0:9999] [0:9999] [0:9999] [2:9999] [0:9999] [0:5] [0:17446] [0:4821.8999999999996] [2007:2018] [1:12] [2830:6909] -1:4:3:2:0:1:5 -1:13:11:3:1:2:10:7:8:12:0:4:5:9:6tree_sizes=770
Tree=0num_leaves=6num_cat=0split_feature=30 2 16 15 2split_gain=3093.94 124.594 59.0243 46.1935 42.6584threshold=1.0000000180025095e-35 9.9675000000000029 1.5000000000000002 17.500000000000004 15.961500000000003decision_type=2 2 2 2 2left_child=1 -1 3 -2 -3right_child=2 4 -4 -5 -6leaf_value=0.023461476907437533 -0.17987415362524772 0.10323905611372351 -0.026732447730002745 -0.10633877114664755 0.14703056722907529leaf_weight=147.41318297386169 569.9415502846241 502.41849474608898 30.554571613669395 100.48724548518658 399.18497054278851leaf_count=544 3633 1325 133 543 822internal_value=-5.60284e-08 0.108692 -0.162658 -0.168852 0.122628internal_weight=0 1049.02 700.983 670.429 901.603internal_count=7000 2691 4309 4176 2147is_linear=0shrinkage=1

end of trees
feature_importances:interest=2known_outstanding_loan=1known_dero=1early_return_amount=1
parameters:[boosting: gbdt][objective: binary][metric: auc][tree_learner: serial][device_type: cpu][data: ][valid: ][num_iterations: 1][learning_rate: 0.1][num_leaves: 6][num_threads: -1][deterministic: 0][force_col_wise: 0][force_row_wise: 0][histogram_pool_size: -1][max_depth: -1][min_data_in_leaf: 20][min_sum_hessian_in_leaf: 0.001][bagging_fraction: 1][pos_bagging_fraction: 1][neg_bagging_fraction: 1][bagging_freq: 0][bagging_seed: 7719][feature_fraction: 1][feature_fraction_bynode: 1][feature_fraction_seed: 2437][extra_trees: 0][extra_seed: 11797][early_stopping_round: 0][first_metric_only: 0][max_delta_step: 0][lambda_l1: 0][lambda_l2: 0][linear_lambda: 0][min_gain_to_split: 0][drop_rate: 0.1][max_drop: 50][skip_drop: 0.5][xgboost_dart_mode: 0][uniform_drop: 0][drop_seed: 21238][top_rate: 0.2][other_rate: 0.1][min_data_per_group: 100][max_cat_threshold: 32][cat_l2: 10][cat_smooth: 10][max_cat_to_onehot: 4][top_k: 20][monotone_constraints: ][monotone_constraints_method: basic][monotone_penalty: 0][feature_contri: ][forcedsplits_filename: ][refit_decay_rate: 0.9][cegb_tradeoff: 1][cegb_penalty_split: 0][cegb_penalty_feature_lazy: ][cegb_penalty_feature_coupled: ][path_smooth: 0][interaction_constraints: ][verbosity: -1][saved_feature_importance_type: 0][linear_tree: 0][max_bin: 255][max_bin_by_feature: ][min_data_in_bin: 3][bin_construct_sample_cnt: 200000][data_random_seed: 38][is_enable_sparse: 1][enable_bundle: 1][use_missing: 1][zero_as_missing: 0][feature_pre_filter: 1][pre_partition: 0][two_round: 0][header: 0][label_column: ][weight_column: ][group_column: ][ignore_column: ][categorical_feature: 35,36][forcedbins_filename: ][precise_float_parser: 0][objective_seed: 8855][num_class: 1][is_unbalance: 0][scale_pos_weight: 1][sigmoid: 1][boost_from_average: 1][reg_sqrt: 0][alpha: 0.9][fair_c: 1][poisson_max_delta_step: 0.7][tweedie_variance_power: 1.5][lambdarank_truncation_level: 30][lambdarank_norm: 1][label_gain: ][eval_at: ][multi_error_top_k: 1][auc_mu_weights: ][num_machines: 1][local_listen_port: 12400][time_out: 120][machine_list_filename: ][machines: ][gpu_platform_id: -1][gpu_device_id: -1][gpu_use_dp: 0][num_gpu: 1]
end of parameters
pandas_categorical:[["\u4e0a\u5e02\u4f01\u4e1a", "\u4e16\u754c\u4e94\u767e\u5f3a", "\u5e7c\u6559\u4e0e\u4e2d\u5c0f\u5b66\u6821", "\u653f\u5e9c\u673a\u6784", "\u666e\u901a\u4f01\u4e1a", "\u9ad8\u7b49\u6559\u80b2\u673a\u6784"], ["\u4ea4\u901a\u8fd0\u8f93\u3001\u4ed3\u50a8\u548c\u90ae\u653f\u4e1a", "\u4f4f\u5bbf\u548c\u9910\u996e\u4e1a", "\u4fe1\u606f\u4f20\u8f93\u3001\u8f6f\u4ef6\u548c\u4fe1\u606f\u6280\u672f\u670d\u52a1\u4e1a", "\u516c\u5171\u670d\u52a1\u3001\u793e\u4f1a\u7ec4\u7ec7", "\u519c\u3001\u6797\u3001\u7267\u3001\u6e14\u4e1a", "\u5236\u9020\u4e1a", "\u56fd\u9645\u7ec4\u7ec7", "\u5efa\u7b51\u4e1a", "\u623f\u5730\u4ea7\u4e1a", "\u6279\u53d1\u548c\u96f6\u552e\u4e1a", "\u6587\u5316\u548c\u4f53\u80b2\u4e1a", "\u7535\u529b\u3001\u70ed\u529b\u751f\u4ea7\u4f9b\u5e94\u4e1a", "\u91c7\u77ff\u4e1a", "\u91d1\u878d\u4e1a"]]

lightgbm集成多棵二叉樹的樹模型,以如下一顆二叉樹的一個父節(jié)點及其兩個葉子分支具體解釋(其他樹及節(jié)點依此類推), 下面內部節(jié)點是以


  • 特征insterest(貸款利率)的數(shù)值 是否<=15.962做的判斷劃分

  • 劃分的增益gain 42.658

  • 樣本權重 901.603

  • 該節(jié)點的樣本數(shù)2147 占據(jù)了30.67%的數(shù)據(jù)

  • 該節(jié)點的如果不繼續(xù)分裂葉子,獲得的分數(shù)值是0.123 劃分后的兩個葉子節(jié)點:

  • leaf2 分數(shù)值 0.103

  • leaf5 分數(shù)值 0.147 分數(shù)值越高說明該葉子決策結果越趨近1(在本例金融風控項目里面也就是數(shù)值越大,越容易違約)


    圖片


在金融風控領域是很注重決策的可解釋性,有時我們可能發(fā)現(xiàn)某一個葉子節(jié)點的決策是不符合業(yè)務解釋性的。比如,業(yè)務上認為利率越高 違約概率應該越低,那我們上圖的節(jié)點就是不符合業(yè)務經驗的(注:這里只是假設,實際上圖節(jié)點的決策 還是符合業(yè)務經驗的)。


那么這時最快微調樹模型的辦法就是直接對這個模型的這個葉子節(jié)點剪枝掉,只保留內部節(jié)點做決策。


那么,如何快速地對lightgbm手動調整樹結構(如剪枝)呢?


lightgbm手動剪枝


這里有個取巧的剪枝辦法,可以在保留原始樹結構的前提下,修改特定葉子節(jié)點的分數(shù)值為他們上級父節(jié)點的分數(shù)值,那邏輯上就等同于“剪枝”了。


  • 剪枝前


    圖片


  • 對應的測試集的模型效果


    圖片


  • 剪枝后 (修改葉子節(jié)點為父節(jié)點的分數(shù))


可以手動修改下模型文件對應葉子節(jié)點的分數(shù)值:


圖片


圖片


我們再驗證下剪枝前后,測試集的模型效果差異:auc降了1%,ks變化不大;


圖片


通過剪枝去優(yōu)化模型復雜度或者去符合合理業(yè)務經驗,對模型帶來都是正則化效果模型可以減少統(tǒng)計噪音的影響(減少過擬合),有更好的泛化效果。



圖片


當然本方法建立在小規(guī)模集成學習的樹模型,如果動則幾百上千顆的大規(guī)模樹模型,人為調整每一顆的樹結構,這也不現(xiàn)實。


編輯:王菁


*博客內容為網(wǎng)友個人發(fā)布,僅代表博主個人觀點,如有侵權請聯(lián)系工作人員刪除。



關鍵詞: AI

相關推薦

技術專區(qū)

關閉