存在串擾時的抖動和定時分析
對串擾引起的BUJ的靈敏度在不同測量系統(tǒng)之間而不同。示波器在測量或推斷抖動時,會悲觀地把BUJ或NP-BUJ捆綁到RJ中,然后還會高報TJ.抖動結果(RJ,TJ)主要取決于侵入信號碼型復雜性,PRBS31最差,而PRB7一般不會導致大的誤差。在實時示波器中,RJ和TJ結果還取決于記錄長度,記錄長度越長,提供的樣點越多,抖動分離能力越好。這一問題的具體機制還與實現(xiàn)方案有關。
BUJ測量解決方案目前,在懷疑存在串擾時,有許多方法進行抖動分析,但沒有一種方法能夠像示波器為DDJ和PJ提供的結果那樣,提供單鍵測量結果。一條線索是抖動分析儀器報導的RJ測量結果是不是異常大。熱效應、也是RJ的最終成因,很少會超過3 ps RMS.如果報告的RJ大于3 ps,那么可能是串擾導致了問題。
識別串擾的其它技巧要求更多地控制侵入信號信道。例如,如果有可能關閉懷疑的侵入信號,那么可以比較侵入信號信道上有信號和沒有信號時的RJ測量數(shù)據。如果有侵入信號的RJ大于沒有侵入信號的RJ,那么串擾就是問題。解決方案是在Dual-Dirac模型中使用侵入信道關閉時測量的RJ及侵入信道打開時測量的雙Dirac DJ,來估算相關BER下的總抖動。這種方法的問題在于,它要求控制侵入信號,而并非一直可能實現(xiàn)。另一個問題是它在非線性系統(tǒng)中是無效的(大多數(shù)發(fā)射機是非線性系統(tǒng)),其對誤差持樂觀態(tài)度,因為部分串擾是無界的。
更加先進的方法是實現(xiàn)識別BUJ的抖動分析算法,這涉及在分隔DDJ和PJ之后在抖動分析中增加一個額外步驟,把NP-BUJ與RJ分開,如圖5所示。一個關鍵優(yōu)勢是這適用于每個場景,因為它不需要控制侵入信號,非線性TX不會帶來問題。此外,無界串擾成分將正確識別為無界。這種方法的缺點是結果仍有一些悲觀。

圖5 識別BUJ的抖動分析及得到的抖動分解地圖
為測試抖動分析算法把BUJ與其它隨機抖動來源準確分開的能力,我們重復圖4所示的測試,但增加了等效時間采樣示波器采用識別BUJ的抖動分析算法提供的結果。圖6中虛線表示的結果與BERT相比仍有些悲觀。實時示波器得到的結果還要更悲觀一些。也就是說,報告的TJ誤差精度大幅度改善,即使在懷疑的串擾可能會導致抖動和噪聲相關誤差時,仍有可能相信示波器的TJ測量。

圖6 識別BUJ的抖動分析(虛線)算法顯示具有大量串擾的DUT上的精度明顯改善
小結隨著數(shù)據速率不斷提高,抖動已經占到信令間隔中非常大的比重,設計人員全面了解設計中抖動類型和抖動來源越來越重要。由于大多數(shù)高速串行設計現(xiàn)在涉及多條通路,串擾幾乎是不可避免的結果,在抖動預算中必須考慮串擾。
但到目前為止,使用抖動分離技術一直很難測量串擾引起的抖動或有界不相關抖動的影響。由于抖動算法沒有考慮BUJ,因此BUJ一直與RJ歸并在一起,與BER測試儀獲得的結果相比,得到的是悲觀的總抖動結果。
正是認識到這種日益增長的問題,特別是對10 Gb/s以上的數(shù)據速率,抖動模型正在擴展到包括BUJ,并增加識別BUJ的算法。在涉及大量串擾的測試中,實踐證明,新模型可以在實時示波器和等效時間采樣示波器上有效提供TJ結果,并與BERT得到的結果一致。它還可以更加全面地分析設計中的抖動問題,包括串擾引起的抖動。
更多資訊請關注:21ic模擬頻道
評論